

MEMORY MASTER CLASS

MAY 5, 2021

Forward-Looking Statements and Other Information

Today's presentations contain forward-looking statements, including those regarding anticipated growth and trends in our businesses and markets, industry outlooks and demand drivers, technology transitions, our business and financial performance and market share positions, our investment and growth strategies, our development of new products and technologies, our business outlook for fiscal 2021 and beyond, and other statements that are not historical facts. These statements and their underlying assumptions are subject to risks and uncertainties and are not guarantees of future performance.

Factors that could cause actual results to differ materially from those expressed or implied by such statements include, without limitation: the level of demand for our products; global economic and industry conditions; the effects of regional or global health epidemics, including the severity and duration of the ongoing COVID-19 pandemic; global trade issues and changes in trade and export license policies, including the recent rules and interpretations promulgated by the U.S. Department of Commerce expanding export license requirements for certain products sold to certain entities in China; consumer demand for electronic products; the demand for semiconductors; customers' technology and capacity requirements; the introduction of new and innovative technologies, and the timing of technology transitions; our ability to develop, deliver and support new products and technologies; the concentrated nature of our customer base; acquisitions, investments and divestitures; changes in income tax laws; our ability to expand our current markets, increase market share and develop new markets; market acceptance of existing and newly developed products; our ability to obtain and protect intellectual property rights in key technologies; our ability to achieve the objectives of operational and strategic initiatives, align our resources and cost structure with business conditions, and attract, motivate and retain key employees; the variability of operating expenses and results among products and segments, and our ability to accurately forecast future results, market conditions, customer requirements and business needs; our ability to ensure compliance with applicable law, rules and regulations; and other risks and uncertainties described in our SEC filings, including our recent Forms 10-Q and 8-K. All forward-looking statements are based on management's current estimates, projections and assumptions, and we assume no obligation to update them.

Applied Materials, the Applied Materials logo, and other trademarks so designated as product names are trademarks of Applied Materials, Inc. Other names and brands are the property of third parties.

2021 Master Classes **WELCOME**

Michael Sullivan CVP, Head of Investor Relations

MEMORY MASTER CLASS | May 5, 2021

Applied Materials External Use

UPCOMING INVESTOR EVENTS

AGENDA

9:00 PART 1 HOST: Mike Sullivan Memory Thesis Fireside Chat | Ed Doller

9:15 PART 2 HOST: Kevin Moraes, Ph.D. Memory Technology DRAM | Sony Varghese, Ph.D. NAND | Sean Kang, Ph.D.

9:50 **PART 3** HOST: Raman Achutharaman, Ph.D. Memory Growth Opportunities

10:00 **Q&A** Raman, Kevin, Mike

Historical WFE

Source: Gartner, VLSI, Applied Materials.

PRESENTED IN 2017 Master Class

MAY ATH-12TH 2017

South Korea's unfinished revolution Crunch time in France Ten years on: banking after the crisis Biology, but without the cells

The world's most valuable resource

Data and the new rules of competition

MEMORY DEMAND: CONTEXT

Big Data and Artificial Intelligence can **transform entire industries** – happening faster than many people think

Explosion of data storage requirements created by IoT, Big Data, AI and streaming video has only just begun

Data generation from **new categories can potentially dwarf existing** applications within a few years

Source: The Economist, May 2017

PRESENTED IN 2017 Master Class

Data Generation to Memory Relationship | Historical

Source: Cisco VNI, Cisco, Gartner, Factset, Applied Materials internal analysis

2006 to 2016 data from Cisco and Gartner. 2017 to 2020 projections from Cisco for data generation (VNI IP traffic), and industry average estimates for DRAM and NAND content shipments

External Use

Data Generation By Category (ZB)

SEMI GROWTH NO LONGER LIMITED BY HUMAN CONSUMPTION

Source: Applied Materials

Applied Materials External Use

Semi content per unit	2015	2020	2025F
HIGH END SMARTPHONE	\$100	\$170	\$275
AUTO (GLOBAL AVERAGE)	\$310	\$460	\$690
DATACENTER SERVER (CPU + ACCELERATOR)	\$1,620	\$2,810	\$5,600
SMARTHOME (GLOBAL AVERAGE)	\$2	\$4	\$9

SILICON CONTENT GROWING AS EVERYTHING GETS SMARTER

Source: Applied Materials

Historical WFE Mix

Memory <45%

Foundry / Logic > 55%

Foundry / Logic vs. Memory mix consistent over time

- 10-year and 20-year averages: Foundry / Logic > 55%
- Foundry / Logic > Memory in 17 of past 20 years

Long-Term Average

Source: Gartner, VLSI, Applied Materials

Memory Market Segmentation

* Cost estimates based on retail devices and pricing

PART 2 Memory Challenges and Roadmaps – DRAM

Sony Varghese, Ph.D. Director, Strategic Marketing

MEMORY MASTER CLASS | May 5, 2021

Applied Materials External Use

DRAM: High-Speed Volatile Memory

- Package density 512GB
- Speed 7200Mbps
- 3 key PPACt enablers Cell, Peri, and Package

Cross-section of cell array

Physics of DRAM and Implications for Scaling

Sensing margin¹ is shrinking with decreasing capacitor charge

DRAM technology node

Gate length scaling² lagging projection for acceptable sensing margin

Source 1: A. Spessot, IEEE Transactions on electron devices, vol. 67, no. 4, April 202 Source 2: TechInsights and Applied Materials projections

DRAM Scaling Roadmap

Year of first production	Node (nm)	Cell capacitance (fF)	Periphery gate length (nm)	Key inflections
2017	20	13	100-115	Lattice for capacitor
2019 ~	17	10	75-90	SAQP ¹
2021 ~	15	7	65-80	DDR5, More SAQP, EUV, HKMG ²
2023 ~	13	5	50-60	Commodity DRAM HKMG ²
2025 ~	11	3	45-55	Low resistance metal
2025 +	3D DRAM	4+	New CMOS	Layered high mobility channel ³

Samsung Announces Industry's First EUV
DRAM with Shipment of First Million Modules

Korea on March 25, 2020

Audio 👞 重 Share 🐊 🖨

Micron: 1α Process Technology to Improve DRAM Density By Up to 40%

By Anton Shilov January 26, 2021

Micron announces impressive 1α fabrication process for DRAM.

Korea on March 25, 2021

SK hynix Launches World's First DDR5 DRAM

October 6, 2020

in f У %

Samsung Develops Industry's First HKMG-Based DDR5 Memory; Ideal for Bandwidth-Intensive Advanced Computing Applications

1. SAQP – Self Aligned Quadruple Patterning 2. HKMG – High k Metal Gate 3. 15X higher mobility than 3DNAND Channe

Audio 🔌 🛃 Share 🐊 🖨

Levers for DRAM Scaling

Levers for DRAM Scaling: Cell Region

DRAM Capacitor Scaling Challenges

AR = Aspect Ratio

Innovations to Enable Low Variability High AR Etch Process

* CD = Critical Dimension

Variability and Defect Reduction with Co-Optimization

AR = Aspect Ratio CD = Critical Dimensior

Levers for DRAM Scaling: Periphery Region

PPACt Scaling of DRAM Peri Transistors with HKMG

HIGH VALUE PROBLEM Thinner insulation layer = higher leakage

PPACt gains with HKMG*13% lower power2X speed

Source: Samsung newsroom, Mar 25, 2021

Accelerating adoption of Logic-like process innovations in DRAM

REQUIREMENTS

Multiple new materials 6-7 materials stack High complexity Metal gate Dipole for Vt engineering PMOS channel

APPLIED LEADERSHIP

PRODUCTS

Interfaces very critical How we treat How we terminate High-k film treatments Interlayer/HK interface Interlayer Engineering Channel interface

e

DRAM Periphery: Interconnect Scaling

• o Conductor Resistivity

- k. Effective Dielectric Constant (Lov
- ε₀ Permittivity in Vacuum
- L Interconnect Lenath
- w_m Metal Width
- w_d Metal Spacing

HIGH VALUE PROBLEM

Periphery scaling reduces wire pitch (w_d) and copper line widths (w_m)

At reduced pitch, signal delay and power losses increase

RC Delay =

$$= \rho k_{,} \varepsilon_{0} \frac{L^{2}}{w_{m} w_{d}}$$

Power = CV^2F

Higher current density in narrow lines, cause early electromigration failures

Source: Applied Materials

DRAM Adopting Interconnect Innovations from Logic

Technology solutions

Dielectric constant

Electromigration lifetime

Adoption of low-k TEOS silicon oxide \rightarrow low-k

Producer[®] Black Diamond[®] Industry leading low-k material Adoption of Cobalt capping Cu interconnect + Co capping

Endura[®] CuBS + CVD Cobalt Industry leading interconnect technology

IMD: Inter-Metal Dielectric

Levers for DRAM Scaling: New Architecture

Planar DRAM Scaling Limitations

Industry targets 20% density increase per node

SAQP limit beyond n+4

Cost challenges from patterning may make scaling uneconomical

Reduction in capacitor charge \rightarrow inadequate sensing margin

New methods to scale are needed to meet PPAC

Applied Materials Projections based on IRDS DRAM roadma

Will 3D DRAM be Fabricated Like 3D NAND?

New material innovations required to enable higher mobility, ultra-low defect channels for 3D DRAM

Enabling the Roadmap to 3D DRAM PPACt Scaling

Unit Process Leadership High mobility channel Epi /PVD/ALD Conductor etch HAR gapfill Selective removal Advanced doping

+

Materials Solutions Leadership

Integrated

Enabling PPACt Roadmap for DRAM

DDR4, 1.2V			DDR5, 1.1V			DDR6
2.3Gbps 8Gb	2.6Gbps 8Gb	3.2Gbps 8Gb	4.8Gbps 16Gb	5.6Gbps 16Gb	7.2Gbps 16/32Gb	12Gbps* 32Gb
2015	2017	2019	2021	202	23	2025
		SAQP Low [Im	Damage HKMG plant			3D DRAM
	Dual deck	E	UV	Low K		
	capacitor		Capacitor Hardmask	Co Ca	pping	Low R Metals

Well positioned with leadership products and integrated materials solutions

PART 2 Memory Challenges and Roadmaps – 3D NAND

Sean Kang, Ph.D.

Sr. Director

MEMORY MASTER CLASS | May 5, 2021

Applied Materials External Use

3D NAND: A High-Density Storage Memory

Source: TechInsights

- State of the art technology:
- Die density: 1Tb
- Number of layers: 176pairs
- Maximum IO speed: 1.6Gbps
- Bit/cell: QLC

Physics of 3D NAND and Implications for Scaling

Vol. 105, No. 9, September 2017 | Proceedings of the IEEE 1609

3D NAND Scaling Roadmap

Year of first production	Node (pair)	Stack height (µm)	Pair thickness (nm)	Key structure inflections
2015	~30	~2.5	~70	
2017	~70	~5	~60	
2019 ~	>100	~7	~50 Staircase Op	
2021 ~	>150	~ 8.5	45 ~ 50	2 Tier, CuA ²
2023 ~	>250	>10	40 ~ 45	Cell Design ³
2025 ~	>350	>> 10	~40	>2 Tier, CoA ⁴
Samsung plans to memory April 22, 2020 // By Peter O	o 'double-stack' 3D-NAND flash _{Clarke} 0 Co	SK hynix Unveils the Industry's Most Multilayered Layer 4D NAND Flash December 4, 2020	176- Intel's New Opta Layer NAND SSD As Well As Data (ne And 144- s Enable PCs Centers
YTMC stakes claim 128 layer 1.33Tb Ql By Chris Mellor - April 14,2020	for top table with LC 3D NAND	November 9, 2020 at 4:01 PM EST Micron Ships World's First 176-Layer NAND, Delivering Flash Memory Performance and Density	g A Breakthrough in layer 3D N By Chris Meller - February 19, 200	l Western Digital build 162- AND

1. Staircase optimization for area saving 2. CuA: CMOS Under Array 3. Cell layout intensification 4. CoA: CMOS over Array

Three Levers for 3D NAND Scaling

Applied Materials External Use

Levers for 3D NAND Scaling: Lateral

3D NAND Staircase Area Savings

Traditional Staircase – Single Flight

Zig-zag Staircase – Multiple Flights

Traditional staircase est: ~120um ~ 90% Staircase Area Savings

	48 Pai	rs
~	60 um	long

96 Pairs ~10 um long

Limitations	Traditional staircase has area penalty, not scalable to more pairs
New Capabilities	Zig-zag Staircase brings new challenges in profile control, CD/ER uniformity, throughput and cost
Adoption	3 in production, others in R&D

Continuing leadership position with Sym3 etch

Cross-section Images from TechInsights CD: Critical Dimension ER: Etch Rate Applied Materials External Use

3D NAND CMOS Area Savings

Today's CMOS and array are side by side

Cell – Memory array area Peri – Peripheral logic CMOS area

3 customers

Adoption

1 customer

New Process Steps Enable CuA and CoA

Hybrid Bonding | Enabling Novel CoA NAND Architecture

W2W hybrid bonded (CoA)

PVD: Physical Vapor Deposition ECD: Electro-Chemical Deposition CMP: Chemical Mechanical Polishing WiW: Within Wafer POR: Process of Record

Key challenges

3. Topography correction

Incoming Wafer

Levers for 3D NAND Scaling: Vertical

Co-Optimized Hardmask Deposition and Etch

Selective Hardmask hardmask open deposition etch Hard New hard mask

HIGH VALUE PROBLEM

Increasing hardmask thickness

More selective hardmask

Co-optimized hardmask etch

In high volume production for multiple layers

High selectivity Low stress Transparent film

Unique source design Improved profile Available strip solution

HMO – Hard Mask Open Applied Materials External Use Source Applied Materials

High Aspect Ratio Large Area Gapfill

HIGH VALUE PROBLEM

1. S.		
		-
		-
	_	
	••••••••••••••••••••••••••••••••••••••	

- Large gaps to fill > 2um
- Aspect ratio > 10:1
- Impacted by shrinkage

- Low shrinking film
- High deposition rate
- Tunable stress

In high volume production

Simplified planarization

- Excellent dishing performance
- Eliminates etchback step

In high volume production

CMP: Chemical Mechanical Polishing

3D NAND Vertical Scaling | Metal Gapfill

HIGH VALUE PROBLEM

Seam suppressed Conventional CVD W CVD W 0.5 µm 0.5 µm

Gapfill voids trap corrosive gas Tungsten stress damages features

Seam suppressed gapfill

Source: Applied Materials SSW – Seam suppressed tungste

Enabling PPACt Roadmap for NAND

	256Gb/512G TLC	ib	512Gb/1Tb TLC / QLC		2Tb+ QLC / QLC+
~30L	~70L 1Gbps	>100L	>150L 3Gbps	>250L	>350L >4Gbps
2015	2017	2019	2021	2023	2025
	2 Tiers	Seam suppressed W	1		Barrier-less metal
	High AR hardmask dep/etch		Optimized Junction CuA		
	Zig-zag staircase etch		High selectivity hardmask dep/etch	HAR gapfill, direct CMP	Heterogeneous bonding CoA

Well positioned with leadership products and integrated materials solutions

PART 3 Memory Growth Opportunities

Raman Achutharaman, Ph.D. GVP, Head of Technology, Strategy, and Marketing

MEMORY MASTER CLASS | May 5, 2021

Applied Materials External Use

AGENDA

9:00 PART 1 HOST: Mike Sullivan Memory Thesis Fireside Chat | Ed Doller

9:15 PART 2 HOST: Kevin Moraes, Ph.D. Memory Technology DRAM | Sony Varghese, Ph.D. NAND | Sean Kang, Ph.D.

9:50 **PART 3** HOST: Raman Achutharaman, Ph.D. Memory Growth Opportunities

10:00 **Q&A** Raman, Kevin, Mike

Significant Momentum Across Device Types

Patterning growth + new products/solutions = Increased memory share, balanced portfolio

Source: Gartner, VLSI, Applied Materials

Applied Materials External Use

Applied = PPACt Enablement Company

Unit process leadership and broadest portfolio Unique combinations of technologies

+

Actionable insight / time to market acceleration

4

MATERIALS CREATION, MODIFICATION, REMOVAL, ANALYSIS CO-OPTIMIZATION INTEGRATED MATERIALS SOLUTIONS (IMS), PACKAGING ACTIONABLE INSIGHT ACCELERATOR (AI^{X ™})

Going Beyond Unit Process Tools to Deliver Solutions

UNIT PROCESS LEADERSHIP + BROADEST PORTFOLIO FASTER TIME TO MARKET, HIGHER VALUE, STICKIER

CO-OPTIMIZATION OF PROCESSES / TOOLS ~40% of our products now co-optimized

INTEGRATED MATERIALS SOLUTIONS

~30% of our products now integrated

ACTIONABLE INSIGHT ACCELERATION

Applied Al^x[™] Actionable Insight Accelerator

real-time ability to see into the process with innovative sensors, in-vacuum metrology

>10,000 process possibilities per tool>1,000,000 possibilities per integrated flow

massive actionable data with unique metrology

PROVision[®]

100X faster 50% higher resolution Al[×][™] analytics platform across all Applied tools

ChamberAl[™] ML algorithms

AppliedPRO[™]

Digital twin models

Integrated controls

Making every stage faster and better: R&D, ramp and HVM 2X faster with 30% better process window

HVM = High Volume Manufacturing

Introducing Materials Engineering Solutions for DRAM Scaling

NEWS RELEASE

Applied Materials Introduces Materials Engineering Solutions for DRAM Scaling

- New Draco[™] hard mask material co-optimized with Sym3[®] Y etcher to accelerate DRAM capacitor scaling
- DRAM makers adopting Black Diamond[®], the low-k dielectric material pioneered by Applied Materials to overcome interconnect scaling challenges in logic
- High-k metal gate transistors now being introduced in advanced DRAM designs to boost performance and reduce power while shrinking the periphery logic to improve area and cost

SANTA CLARA, Calif., May 5, 2021 – Applied Materials, Inc. today announced materials engineering solutions that give its memory customers three new ways to further scale DRAM and accelerate improvements in chip performance, power, area, cost and time to market (PPACt).

The digital transformation of the global economy is generating record demand for DRAM. The Internet of Things is creating hundreds of billions of new computing devices at the edge which are driving an exponential increase in data transmitted to the cloud for processing. The industry urgently needs breakthroughs that can allow DRAM to scale to reduce area and cost while also operating at higher speeds and using less power.

Applied Materials is working with DRAM customers to commercialize three materials engineering solutions that create new ways to shrink as well as improve performance and power. The solutions target three areas of DRAM chips: storage capacitors, interconnect wiring and logic transistors. They are now ramping into high volume and are expected to significantly increase Applied's DRAM revenue over the next several years.

Growing by Enabling the Capacitor Roadmap

\$1B cumulative TAM opportunity

>4X annual revenue growth

Breaking tradeoffs: area, capacitance, variability

Innovative technologies + acceleration with co-optimization + acceleration with metrology

Delivering node-over-node PPAC*t* gains ↑performance, ↑yield, ↓area

DTOR / PTOR at major DRAM customers

DTOR = Development Tool of Record PTOR = Production Tool of Record

Year

Leadership in PPACt Solutions for Periphery Scaling

>**\$2B** cumulative TAM opportunity

>3X annual revenue growth

Leadership products for HKMG transistors and interconnects

Decades of experience with logic-like processing

Delivering node-over-node PPACt gains \downarrow power , \uparrow performance, \uparrow yield, \downarrow area

DTOR / PTOR at major DRAM customers

DTOR = Development Tool of Record PTOR = Production Tool of Record

Well Positioned for Growth in Packaging

Early innings of multi-year growth

#1 in bond-pad, bump and TSV

Broad product portfolio + full-flow lab

Key eco-system partnerships

Delivering system level PPACt gains \downarrow R, \downarrow power, \downarrow area, \uparrow performance

SV = Through Silicon Via

TAKEAWAY

Messages

- 1. 'Al era' = **Secular growth** and accelerated innovation
- 2. Applied = The **PPACt enablement** company
- **3. Uniquely positioned** to accelerate the PPACt roadmap Unit processes, unique combinations, actionable insight acceleration

4. Multiple big **inflections and growth opportunities** for Applied Materials

Free cash flow = operating cash flow – net capital expenditure
Non GAAP adjusted EPS

